17AE73

Seventh Semester B.E. Degree Examination, Jan./Feb.2021 Aircraft Stability & Control

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. The wing fuselage pitching moment characteristics of a high-wing, single-engine, general aviation airplane follow, along with pertinent geometric data: $Cm_{cg}_{wf} = -0.05 - 0.0035\alpha$ where α is the fuselage reference line angle of attack in degrees and wf means wing fuse lage.

$$S_w = 178 \text{ m}^2$$
, $C_{L_{\alpha_w f}} = 0.1$, $S_w = 35.9 \text{ m}$, $C_{L_{\alpha_w f}} = 0.07/\deg$, $C_{L_{\alpha_w f}} = 0.06$.

Estimate the horizontal tail area and tail incidence angle, i_t , so that the complete airplane has the following pitching moment characteristics: $C_{m_{cg}} = 0.15 - 0.025\alpha$, where α is in

degrees and wft is the wing fuselage tail contribution. Assume $\ell_t = 14.75$ m, $\eta = 1$, AR_t = 4.85, C_{L α_t} = 0.073/deg. (10 Marks)

b. Derive expression for wing contribution for the longitudinal static stability of an airplane.
(10 Marks)

OR

2 a. Derive the expression for elevator control power.

(10 Marks)

b. At its forward most center of gravity position is as follows: $C_{m_{cg}} = -0.20 - 0.035\alpha$, where α is in degrees. Estimate the size of the elevator to trim the airplane at the landing angle of attack of 10° and Flop effectiveness parameter. Assume that the elevator angle is constrained to $+20^\circ$ and -25° . $\ell_t = 16 \, \text{m}$, $S_t = 43 \, \text{m}^2$, $S = 184 \, \text{m}^2$, $C = 5.7 \, \text{m}$, $C_{L_{\alpha_t}} = 3.91 \, \text{rad}^{-1}$, $\eta = 1$

τ	0.24	0.32	0.49	0.58	0.62
S_C/S_t	0.1	0.2	0.3	0.4	0.5

(10 Marks)

Module-2

- 3 a. With a help of diagram and expression, explain the control surface floating characteristics and aerodynamic balance. (10 Marks)
 - b. Derive the equation for stick-free neutral point.

(10 Marks)

OR

- 4 a. Briefly explain the requirements for direction control and obtain the expression for rudder control effectiveness. (10 Marks)
 - b. Obtain an expression for stick force gradient $\frac{dF}{dV} = K\rho V \left(A + Ch_{\delta_t} \delta_t \right)$ (10 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

- 5 a. Explain the effect of wing sweep, flaps and power on dihedral effect. (10 Marks)
 - b. For the NAVION airplane, estimate the roll control power, $C_{l_{\delta a}}$. Assume that the wing and

aileron geometry are as:

 $\frac{b}{2} = 16.7$ m, $\lambda = 0.54$, $C_r = 7.2$ m, $C_t = 3.9$ m, $y_1 = 11.1$ m, $y_2 = 16$ m, S = 184 m², $C_{L_{\alpha_{00}}} = 4.44 / \text{rad}$. $C_{a/c} = 0.18 \text{m}$, $\tau = 0.36$.

Take for tapered wing, C = C(06 Marks)

Explain Dihedral effect

(04 Marks)

- Write short notes on Aileron reversal and Adverse yaw effect. 6 (10 Marks)
 - Obtain the relation for Lateral Control Power.

(10 Marks)

Module-4

Derive equation of motion of rigid body. 7 (10 Marks) Explain Aerodynamic force and moment representation. (10 Marks)

- Derive an expression for change in forward velocity (10 Marks)
 - Obtain derivatives due to the pitching velocity.

(10 Marks)

Module-5

- Examine the two potential cases where the Routh method breaks down. The two characteristic equations are as follows:
 - (i) $\lambda^5 + \lambda^4 + 3\lambda^3 + 3\lambda^2 + 4\lambda + 6 = 0$
 - (ii) $\lambda^6 + 3\lambda^5 + 6\lambda^4 + 12\lambda^3 + 11\lambda^2 + 9\lambda + 6 = 0$

(10 Marks)

b. Explain Dutch roll and Spiral Instability with relevant sketches.

(10 Marks)

- 10 Write short notes on:
 - a. Wind shear.
 - Flying qualities.
 - Cooper-Harper scale.
 - Auto-rotation and spin.

(20 Marks)